Аннотация к рабочей программе по учебному предмету «Математика»

Рабочая программа по математике составлена для учащихся 5-10 классов, обучающихся по адаптированной основной общеобразовательной программе основного общего образования для детей с НОДА (вариант 6.2)

Для обучения математике в ГКОУ РО Волгодонской специальной школе-интернате «Восхождение» выбрана содержательная линия УМК:

- «Математика» 5 класс в 2 частях под редакцией Н.Я. Виленкина, В.И. Жохова. Издательство «Мнемозина» 2019г.
- «Математика» 6 класс под редакцией Н.Я. Виленкина, В.И. Жохова. Издательство «Мнемозина» 2019г.
- «Алгебра» 7 класс под редакцией Ю.М. Колягина. Л.И. Звавич, Л.В. Кузнецова, С.Б. Суворова. Москва «Просвещение», 2021.
- «Алгебра» 8 класс под редакцией Ю.М. Колягина. Л.И. Звавич, Л.В. Кузнецова, С.Б. Суворова. Москва «Просвещение», 2018.
- «Алгебра» 9 класс под редакцией Ю.М. Колягина. Л.И. Звавич, Л.В. Кузнецова, С.Б. Суворова. Москва «Просвещение», 2019.
- « Геометрия» в 7-9 классах под редакцией Л.С. Атанасян, В.Ф. Бутузов, С. Б. Кадомцев и др., М.: Просвещение, 2014. Изучение геометрии в 7-9 классах: методические рекомендации: книга для учителя / Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]- М.: Просвещение, 2014.

Общая характеристика учебного предмета «Математика»

Рабочая программа по математике для обучающихся 5–10 классов разработана на основе Федерального государственного образовательного стандарта основного общего образования с учётом современных мировых требований, предъявляемых к математическому образованию и традиций российского образования, которые обеспечивают овладение ключевыми компетенциями, составляющими основу для непрерывного образования и саморазвития, а также целостность общекультурного, личностного и познавательного развития обучающихся. В рабочей программе учтены идеи и положения Концепции развития математического образования в Российской Федерации.

В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без базовой математической подготовки. Уже в школе математика служит опорным предметом для изучения смежных дисциплин, а после школы реальной необходимостью становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. Это обусловлено тем, что в наши дни растёт число профессий, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг обучающихся, для которых математика может стать значимым предметом, расширяется.

Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и прикладных идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты и составлять алгоритмы, находить и применять формулы, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм и графиков, жить в условиях неопределённости и понимать вероятностный характер случайных событий.

Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике и в формировании

алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач — основой учебной деятельности на уроках математики — развиваются также творческая и прикладная стороны мышления.

Обучение математике даёт возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.

Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека.

Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

Цели изучения учебного предмета «Математика»

Приоритетными целями обучения математике в 5–10 классах являются:

формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция), обеспечивающих преемственность и перспективность математического образования обучающихся;

подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, понимание математики как части общей культуры человечества;

развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики;

формирование функциональной математической грамотности: умения распознавать проявления математических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.

Основные линии содержания курса математики в 5–10 классах: «Числа и вычисления», «Алгебра» («Алгебраические выражения», «Уравнения и неравенства»), «Функции», «Геометрия» («Геометрические фигуры и их свойства», «Измерение геометрических величин»), «Вероятность и статистика». Данные линии развиваются параллельно, каждая в соответствии с собственной логикой, однако не независимо одна от другой, а в тесном контакте и взаимодействии. Кроме этого, их объединяет логическая составляющая, традиционно присущая математике и пронизывающая все математические курсы и содержательные линии. Сформулированное в Федеральном государственном образовательном стандарте основного общего образования требование «уметь оперировать понятиями: определение, аксиома, теорема, доказательство; умение распознавать истинные и ложные высказывания, приводить примеры и контрпримеры, строить высказывания и отрицания высказываний» относится ко всем курсам, а формирование логических умений распределяется по всем годам обучения на уровне основного общего образования.

Содержание образования, соответствующее предметным результатам освоения рабочей программы, распределённым по годам обучения, структурировано таким образом, чтобы ко всем основным, принципиальным вопросам обучающиеся обращались неоднократно, чтобы овладение математическими понятиями и навыками осуществлялось последовательно и поступательно, с соблюдением принципа преемственности, а новые знания включались в общую систему математических представлений обучающихся, расширяя и углубляя её, образуя прочные множественные связи.

Принципы реализации адаптированной рабочей программы

При реализации принципа дифференцированного (индивидуального) подхода в обучении математике учащихся с НОДА необходимо учитывать уровень развития у них мануальных навыков. Учитель в процессе обучения определяет возможности учащихся выполнять письменные работы, пользоваться математическими инструментами в процессе построения геометрических фигур и

измерительных операций. Так же в процессе обучения математике, учителю необходимо учитывать уровень и качество развитие устной речи учащихся. При недостаточном уровне ее развития необходимо использовать такие методы текущего и промежуточного контроля знаний учащихся, которые бы объективно показывали результативность их обучения. Включения обучающихся в проектную и учебно-исследовательскую деятельность, проведения наблюдений и экспериментов, в том числе с использованием учебного лабораторного оборудования, цифрового (электронного) и традиционного измерения, включая определение местонахождения, виртуальных лабораторий, вещественных и виртуально-наглядных моделей, и коллекций основных математических объектов.

Обучающиеся с двигательными нарушениями испытывают ряд трудностей в процессе обучения математике. Моторные нарушения ограничивают способность к освоению предметно практической деятельности. Это приводит к тому, что формирующиеся знания и навыки являются непрочными, поверхностными, фрагментарными, не связанными в единую систему. Обнаруживаются трудности в формировании пространственных и временных представлений, счетных операций, работе с тетрадью, учебником, способах записи примеров в столбик, соблюдением орфографического режима.

На уроках математики, учащиеся с НОДА испытывают особенные трудности при выполнении рисунков, чертежей, графиков, так как им трудно одновременно держать карандаш и линейку, поэтому им обязательно требуется помощь взрослого (учителя, ассистента). Обучающемуся с НОДА бывает проще нажатием клавиш выполнить чертёж на компьютере, чем это сделать с помощью карандаша и линейки. Обучающимся с НОДА достаточно тяжело осваивать ввод математических символов, например, обыкновенных дробей.

Если у учащегося есть нарушения функций рук, то геометрический материал можно рассматривать обзорно, задачи, связанные с построением, пропустить. Виртуальная лаборатория по математике, например, на платформе МЭШ (РЭШ) дает обучающимся возможность выполнять построение геометрических фигур на плоскости и в пространстве, работать с координатной плоскостью. Большое внимание необходимо обращать на практическую направленность обучения математике, а именно: а) измерение периметров и площадей; б) вычислительные навыки, в том числе и с помощью калькулятора.

Одной из особенностей работы с учащимися с НОДА является то, что им необходимо больше времени для выполнения заданий, чем здоровым обучающимся, поэтому для контроля знаний лучше использовать задачи на готовых чертежах, задачи, в которых уже напечатано условие и начало решения, а обучающимся остаётся его только закончить или выполнить тестовые задания. Перед контрольными работами необходимо проводить обобщающие уроки по теме, так как у обучающихся с НОДА отмечаются недостатки развития памяти, особенно кратковременной. Обобщающие уроки дают возможность сконцентрировать внимание на основных упражнениях, введенных в контрольную работу.

Характеристика особых образовательных потребностей обучающихся с НОДА

Особые образовательные потребности у обучающихся с нарушениями опорно-двигательного аппарата задаются спецификой двигательных нарушений, а также спецификой нарушения психического развития, и определяют особую логику построения учебного процесса. Наряду с этим можно выделить особые по своему характеру потребности в обучении математике, свойственные всем обучающимся с НОДА:

- необходимо использование специальных методов, приёмов и средств обучения (в том числе специализированных компьютерных и ассистивных технологий), обеспечивающих реализацию «обходных путей» обучения; использование виртуальной математической лаборатории.
- наглядно-действенный, предметно-практический характер обучения математике и упрощение системы учебно-познавательных задач, решаемых в процессе обучения;
- специальное обучение «переносу» сформированных математических знаний и умений в новые ситуации взаимодействия с действительностью;
- специальная помощь в развитии возможностей вербальной и невербальной коммуникации на уроках математики;
- коррекция произносительной стороны речи; освоение умения использовать речь по всему спектру коммуникативных ситуаций;
 - обеспечение особой пространственной и временной организации образовательной среды;

- максимальное расширение образовательного пространства выход за пределы образовательного учреждения при решении математических задач и выполнении проектных работ.
- использовать алгоритмы действий при решении обучающими с НОДА определенных типов математических задач, в том числе в процессе выполнения самостоятельных работ.